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Abstract. The tricritical relaxation of the hard squares model with attractive next-nearest- 
neighbour interactions is studied. The dynamic exponent zt of the model at its exactly 
known tricritical point is determined using the dynamic Monte Carlo renormalisation group 
method. The value of z ,  is found to be 2.18+0.11. 

1. Introduction 

The dynamic properties of kinetic Ising models have been extensively investigated in 
the past by a variety of analytic and computational methods. In particular, the dynamic 
Monte Carlo renormalisation group ( DMCRG) method has provided accurate and 
systematically improvable estimates of the dynamic exponent z (Kalle 1984, Williams 
1985 and references therein). While the dynamic critical properties of kinetic Ising 
models have been studied extensively, very few studies exist of the dynamic properties 
of tricritical models. In these models, the dynamic tricritical exponent z, (dynamic 
exponent at the tricritical point) is also of interest in addition to the dynamic critical 
exponent z,. The simplest tricritical models with well understood static properties 
occur in the universality class of (annealed) dilute Ising models. Well known examples 
are the Blume-Cape1 or the more general Blume-Emery-Griffiths (BEG) model and 
the Ising metamagnet (see e.g. Landau and Swendsen 1981). We note that the critical 
exponent z ,  in the dynamic version of these models corresponds to the dynamic 
exponent of the pure Ising model. In three dimensions a direct Monte Carlo analysis 
of the Ising metamagnet with Glauber kinetics gave z, = 2.00 (Muller-Krumbhaar and 
Landau 1976). This result which agrees with the conventional theory was subsequently 
confirmed by E expansions (near four dimensions) on a similar model to all orders in 
E (Siggia and Nelson 1977). By comparison, z, in three dimensions was determined 
to be 2.02 using E expansions (Bausch et al 1981), while a DMCRG analysis gave 
z, = 1.965i0.010 (Kalle 1984). Recently, Achiam (1985, 1986) and Weir and Kosterlitz 
(1986) studied the one-dimensional kinetic BEG model and obtained z, = z, = 2.00. 

In this study we analyse the dynamic tricritical exponent of a two-dimensional 
model. We study the kinetic hard squares lattice gas model with attractive next-nearest- 
neighbour interactions. The tricritical point of this model is in the same universality 
class as that of a dilute Ising model, and its location is known exactly (Huse 1983 and 
references therein). We estimate z, through the DMCRG method used in the sense of 
Tobochnik et al (1981). We find z,=2.1810.11. This value disagrees with the above 
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mentioned E expansion result of z, = 2.00 found to all orders in E. We can also make 
a comparison with z,. In two dimensions, z,, which corresponds to the dynamic critical 
exponent of the Glauber-Ising model, has been extensively studied in the past using 
a variety of methods. Two recent DMCRG analyses gave z ,  = 2.13 * 0.03 (Williams 1985) 
and z,=2.14*0.02 (Kalle 1984). We note that our result for z, is rather close to these 
values, considering the statistical accuracy of our calculation. This behaviour seems 
interesting in view of the rather different static exponents for the Ising-type critical 
and tricritical points (Nienhuis 1982). Clearly, a more accurate evaluation of z, is 
necessary to be able to make a better comparison of z, and z,, 

We present the model in § 2 with the method and calculations explained in 3 3. 
Results are discussed in § 4. 

2. The model 

The Hamiltonian of the model is defined on the square lattice with an infinitely repulsive 
nearest-neighbour interaction (thus ‘hard squares’). In addition there is an attractive 
interaction between next-nearest-neighbour pairs, and a chemical potential term. Thus, 
including the inverse temperature factor ( - p )  the Hamiltonian is 

where c, is the lattice gas variable which can take on the values c, = 0 or c, = 1 and the 
sums En,, and E,,, extend over all nearest-neighbour and over all next-nearest-neighbour 
pairs, respectively. Transforming (2.1) into Ising-spin language with variables U, = 
2c, - 1 where U, = * 1 we arrive at the thermodynamically equivalent model: 

- px = - : J + : K a,a, + ( - J + K + $) J+m, K > 0 .  (2.2) 
nn nnn  I 

We note that the net effect of the J term in the limit J + m  is to exclude all spin 
configurations with (+, +) nearest-neighbour pairs from the partition sum. In the 
phase diagram, there is a paramagnetic phase in the region K +p/2<< 0, while in the 
region K + p / 2  >> 0 there is antiferromagnetic order with non-zero staggered magnetisa- 
tion. The transition between the paramagnetic and antiferromagnetic phases is of the 
first order for large K giving rise to a first-order transition line in the phase diagram. 
For small K the transition is continuous and there is a critical line. The two transition 
lines are joined by a tricritical point. The location of the first-order line and the 
tricritical point have been exactly determined by Baxter (1980, 1982) in the context of 
a more general model. The tricritical point is located at K = 1.6555 . . . , p = 3.2538 . . . . 
Baxter’s solution for the present model and the above features of the phase diagram 
were first pointed out by Huse (1982, 1983). The tricritical exponents of the model 
have turned out to be identical to those of a dilute Ising model, as suggested by the 
symmetry of the model (Huse 1982, 1983, Nienhuis 1982). 

The dynamics of the model is the relaxational, non-conserved order parameter 
dynamics generated by the standard spin-flip Monte Carlo procedure (Binder 1976). 
A site on the lattice is chosen at random, the energy change which would result from 
flipping the spin on that site is calculated and the spin is flipped according to the 
probability min{exp(-AE), 1). Time is measured in Monte Carlo steps per spin (MCS).  
We note that there are two critical parameters at the tricritical point of our model as 
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is characteristic of a tricritical system (Riedel and Wegner 1972). These are the staggered 
magnetisation (order parameter) and the magnetisation (non-ordering parameter). 
This implies that in the dynamics there are two independent modes which exhibit 
critical slowing down at the tricritical point. However, we expect that as in critical 
dynamics there will be a single relevant timescale at the tricritical point determined 
by the slowest relaxation mechanism in the system, and this timescale will govern the 
behaviour of the time correlation functions and hence the dynamic exponent. 

3. Method and calculations 

Several variants of the DMCRG method exist at present. The basic idea utilised by all 
formulations is the dynamic scaling which states that if the length scale of a system 
changes by a factor b upon renormalisation, then the timescale must change by a factor 
b'. In the procedure introduced by Tobochnik et a1 (1981) two systems with sizes L 
and bL are simulated by the Monte Carlo method. Renormalised systems are obtained 
from the configurations of the original lattices by using (typically) the majority-rule 
blocking, which reduces the size of the system by a factor of b. One then attempts to 
find two times, t and t ' ,  such that the time correlation functions evaluated on the 
smaller lattice after m blockings 'match' those evaluated on the larger lattice after 
m + 1 blockings. According to dynamic scaling t and t' must be related as t' = tb'. 
This then determines z. 

In the version of the DMCRG developed by Katz et a1 (1982) the matching is applied 
in the long-time regime in which the time correlations are expected to have a simple 
exponential behaviour. This approach is known to be equivalent to a finite-size scaling 
analysis (Williams 1985). 

A different formulation of the DMCRG was also developed by Jan et a1 (1983). In 
this procedure the matching is done in the short-time regime using the non-equilibrium 
averages of magnetisation. 

In this study we have utilised the DMCRG in the sense of Tobochnik et a1 (1981). 
In our calculations we have used the same-site time correlation function r: 

Here, L is the lattice size, m is the number of renormalisation transformations 
performed, N("') is the number of block spins on the mth renormalised lattice and 
m i m )  = il are the block-spin variables. Since the simulations are performed at the 
tricritical point, successive renormalisation transformations are expected to lead to a 
fixed point, and for sufficiently large m we expect the matching condition 

r ( L ,  m ;  t )=T(bL ,  m i l ;  tb'). (3.2) 
To check the extent of the approach to the fixed point one can compare static quantities 
on the renormalised lattices, since these quantities are expected to match near the fixed 
point. For this reason we have also calculated the next-nearest-neighbour static 
correlation function C: 

(The nearest-neighbour correlation function in our model is proportional to the mag- 
netisation. Thus this quantity displays large fluctuations.) 
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We have performed our simulations on two initial lattices with sizes L =  54 and 
L =  18. Renormalised lattices have been obtained by applying the majority rule with 
3 x 3 blocks (hence b = 3 in our analysis) as shown in figure 1. We have employed 
periodic boundary conditions and random initial configurations. The averages have 
been performed by using 150 independent runs of 2 x lo4 MCS for the 54 x 54 lattice 
and 180 independent runs of 1 x lo4 MCS for the 18 x 18 lattice. Our error estimates 
are based on the spread of the data in these independent runs. The results for C are 
shown in table 1. We note that the static quantities C (  L, m )  and C( bL, m + 1) are off 
by about three standard deviations for the 18 x 18 renormalised lattices, while they 
match well within one standard deviation for the 6 x 6  renormalised lattices. This 
indicates that while the effects of the irrelevant operators still exist after the first 
renormalisation, they are sufficiently reduced through the second renormalisation to 
give us a fixed point behaviour. 2 x 2 renormalised lattices have been excluded from 
our analysis because lattices of this size are not expected to encompass the range of 
interactions in the fixed-point Hamiltonian. 

We now turn to the dynamic quantities. In table 2 we show results for r( t )  evaluated 
at time values which differ by a factor of nine on the two initial lattices. If there were 
perfect matching of r values this would give z, = 2 due to equation (3.2). Since there 
is not perfect matching, we use the values of r at intermediate time values for the 

Figure 1. The block construction used in the RG transformation. Full and open circles 
represent the two sublattices of the initial model while the 3 x 3 blocks constructed with 
full and broken lines represent the two sublattices of the renormalised model. 

Table 1. Results for C ( L ,  m), for L =  18 and 54. 

0 0.8014* 0.0021 
1 0.8203 * 0.0019 0 0.8122 * 0.0012 
2 0.8508 i 0.0024 1 0.85 19 * 0.00 17 
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Table 2. Results for T ( L ,  m; t )  and z , ,  for L =  54 and 18. 

t m r(54, m ;  t )  t m r(18, m; t )  *t 

99 0 0.6213 f 0.0047 
1 0.7293 f 0.0029 
2 0.8542 * 0.0021 

198 0 0.6033 f 0.0043 
1 0.7059 1 0.0034 
2 0.8272 f 0.0027 

297 0 0.5942 f 0.0050 
1 0.6963 * 0.0040 
2 0.81201 0.0034 

11 
0 0.7148*0.0018 
1 0.8471 *0.0016 2.16+ 0.08 

22 
0 0.691 1 * 0.0022 
1 0.8195 *0.0021 2.1810.10 

33 
0 0.6791 * 0.0024 
1 0.8042 * 0.0024 2.1910.14 

initial 18 x 18 lattice and apply interpolation to obtain the times which would give 
perfect matching. This procedure has been carried out for three different time values 
( t  = 99, 198 and 297) for the initial 54 x 54 lattice and resulted in the three estimates 
of z, given in table 2. Since the static quantities match properly only for the 6 x 6  
renormalised lattices, the Z, estimates have been included only for these lattices. The 
average of the three estimates given in table 2 results in the final average z ,  = 2.18 f 0.1 1. 

4. Conclusions 

We have determined the dynamic tricritical exponent Z, of the hard squares model 
with attractive next-nearest-neighbour interactions. The tricritical point of this model 
is in the same universality class as the tricritical point of a dilute Ising model. We 
have used the DMCRG method to obtain the estimate z ,  = 2.18 * 0.1 1. This value is in 
disagreement with the &-expansion (around four dimensions) result z ,  = 2.00 (Siggia 
and Nelson 1977). However we cannot strictly compare the two results, for although 
the result z ,  = 2.00 was obtained to all orders in E ,  there is clearly little reason to expect 
it to be valid for two dimensions. As we remarked in § 1, another aspect of our result 
is that our value for z, appears to be rather close (in fact, equal within statistical 
accuracy) to the values found in previous studies for the corresponding (Ising) dynamic 
critical exponent z,. While there seems no theoretical reason for the equality or even 
closeness of z ,  and z,, the same behaviour also occurs in the one- and three-dimensional 
cases, as can be seen from the results of previous studies stated in § 1. Nevertheless, 
for the two-dimensional case treated here a more accurate evaluation of Z, is necessary 
to draw a conclusion in this respect. Further work in our analysis is also necessary to 
ensure the convergence of our estimates. For this, one needs to perform further RG 

steps, which requires bigger initial lattices and consequently much longer computation 
times. An implementation of DMCRG, which uses short-time non-equilibrium averages 
as in the method of Jan e? a1 (1983) might be computationally more efficient in this 
respect. Finally, we must point out that in our analysis we have not considered any 
small shift in the tricritical point arising from finite-size effects. Although in principle 
such a shift might prevent the renormalised systems from properly converging onto 
the tricritical fixed point, in view of the relatively large tricritical region in our model 
(the crossover exponent 4 = 0.44 (Nienhuis 1982)) we regard this behaviour as unlikely. 
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